电力检修|电力系统混沌现象及相关研究

   更新日期:2017-03-30     来源:建材之家    作者:安防之家    浏览:56    评论:0    
核心提示:电力系统混沌现象及相关研究  贾宏杰,余贻鑫,王成山  (天津大学电气自动化与能源工程学院,天津300072)摘要:利用非线性动力系统的基本理论,并借助于一个简单的电力系统,给出了电力系统中导致混沌出现的两种不同的途径。运用Piocaré截面和Piocaré映射技术,深入研究这两种途径的表现形式、内在规律、引发机理,并进一步讨论了它们与电力系统扰动间的关系。由于混沌现象存在时,系统运行参数将伴随持

2017款较新中空玻璃设备已推进河北市场

推荐简介:感谢石家庄杨总和赵总对博因数控的支持与认可采购中空玻璃设备一套(1800内外合生产线,丁基胶涂布机,全自动中空玻璃封胶线,还有辅助设备铝条切割锯,砂带磨边机设备)由于客户订货周期较短,博因人也是在保证设备质量的前提下加班加点生产并连夜发货,下图为中空玻璃生产线发货照片山东博因数控机械有限公司  电话:***联系人:巩经理手机:***优质的产品, 良好的服务,为广大用户创造更大的价值★博因数控承......
安防之家讯:cript>电力系统混沌现象及相关研究贾宏杰,余贻鑫,王成山(天津大学电气自动化与能源工程学院,天津300072)
利用非线性动力系统的基本理论,并借助于一个简单的电力系统,给出了电力系统中导致混沌出现的两种不同的途径。运用Piocaré截面和Piocaré映射技术,深入研究这两种途径的表现形式、内在规律、引发机理,并进一步讨论了它们与电力系统扰动间的关系。由于混沌现象存在时,系统运行参数将伴随持续无规则的振荡,这在电力系统运行中是绝对不允许的,而弄清楚混沌的产生机理,将有利于对它的预防。


1 引言

近年来,随着对电力系统稳定性的深入研究,国内外学者相继发现在电力系统中存在十分复杂的混沌现象[1~5]。混沌是非线性系统中各参数相互作用导致的一种非常复杂的现象。它在电力系统中出现时,将伴随系统运行参数持续无规则的振荡,严重危害系统的运行安全,而要在电力系统中有效地预防和消除它,首先应弄清楚其引发机理和产生途径。本文的工作将借助非线性动力系统的一些基本理论和工具,研究电力系统中诱发混沌现象的两种途径:①从一个不稳定的平衡点出发,在未受任何扰动情况下,系统最终收敛到混沌吸引子;②系统经较大的扰动,本身具有很大的动能,其扰动后的终态呈现为混沌。并揭示相应的演变过程和内在规律。

2 电力系统中的混沌现象及其产生途径

混沌现象是“在完全确定性的模型下产生的不确定性现象[6]”。从对混沌现象的定性描述中,不难看出,很难为混沌本身下一个完整准确的定义。在长期的研究中,人们只是感性地认识到混沌系统Ψ所存在的一些典型的性质[6]:Ψ是有界的(因而也称之为奇异吸引子);Ψ的任何轨道都是不稳定的;Ψ含有不可数无穷多个在Ψ中稠密的轨道;Ψ的周期轨道是稠密的;轨道对初值有敏感的依赖性,即任意2个轨道不论其初始点如何靠近都将随t的增加而截然不同,等等。下边笔者将利用如下图1所示的一个简单的3节点系统,研究和讨论电力系统中混沌出现的两种途径。2.1系统模型

图1所示系统中节点1是发电机节点,节点3是无穷大母线,节点2为含有动态负荷特性的负荷节点,系统模型如下:
上述式中各参数的含义参见文[2]和文[5]。
系统模型的一般形式可表示为当发电机具有快速励磁时,式(8)的状态变量为;而当发电机为经典模型时,状态变量变为x=[δ,sm,,δL,VL]T,此时若Y3取值为0,则该模型与文[2]中的所用模型相同,但由于文[2]H取值不在实际物理参数范围内,本文对其进行了修正。本文研究中,分岔变量λ仍取为Q1d。2.2 连续倍周期分岔导致的混沌图1所示系统中,当发电机具有快速励磁装置,初始点取为:x0=[0.7611155,0,1.332678,-0.3283270,4.198358,0.2396075,0.7795296]T,TA=0.05,KA=140,Q1d取如下2个初值(其中Case1条件对应着系统的一个平衡点,而Case2在数值上仅与Case1相差10-7):
Case1 Q1d=1.2030000(图2中用实线表示);Case2 Q1d=1.2030001(图2中用虚线表示)。对系统进行仿真,可得到图2-4所示的结果。其中图2给出了两种情况下发电机角度δ随时间变化的曲线;图3给出了Case1的δ-sm图;图4则绘出了Case1在如下Piocaré映射[6]上(在(Eq,VL,Ed)三维空间中)的投影:
 式中 δc为角度的振荡中心:
从图2-4中,可以看出以下几点:
(1)如上所述,混沌系统的轨迹对初始点具有敏感的依赖性,此特征在图2中十分明显,例如当Q1d取值仅相差10-7,而其相图在经历一段时间演变后,将完全不同; 
(2)混沌现象是与持续、有界而又不规则的系统振荡相联系的,其振荡过程是相当稳定的(选用不同的积分方法,积分达20000s均可得到相同的结果,作为研究,此时间可认为足够长);各种周期轨道,在混沌系统中稠密(图3);同时任何一种周期轨道在混沌区域内都是不稳定的,即在混沌区域内无法找到完全相同的片段;
(3)Piocaré映射分布在有限空间范围内(说明该系统是有界的),其形状如一个扭曲带子,且一端有分叉结构(图4)。同时,此带状体的每一个局部空间内点的分布并不均匀,形成斑状结构(见图4中的放大部分),说明系统的Piocaré映射具有精细的结构[6],当仿真的点数增加时,精细结构将更加明显。
在关于混沌的研究中,一种常见的途径是系统通过连续的倍周期分岔导致混沌出现,即系统由最初的单周期分岔出倍周期、接着出现4倍周期、8倍周期、……,若此过程持续下去,系统最终将出现混沌现象。在图1系统中,我们捕捉到这一种诱发混沌出现的途径:发电机采用双轴模型带快速励磁,参数取值同上,仍采用式(9)的Piocaré截面Θ,并将系统与Θ交点x处的δ坐标定义为δ,用它做为分岔图的纵坐标,即 相应的系统分岔图示于图5。
当Q1d<1.1915时系统中存在着稳定的周期解,当Q1d在1.1915~1.1970之间时存在着稳定的2周期轨道,接下来系统出现4周期(Q1d≈1.1970)和8周期(Q1d≈1.19808)……直至系统中出现混沌(Q1d≈1.19845),系统中存在有稳定的奇异吸引子。由典型的混沌系统,如Logistic、Loronz和Rossler的分岔图可知,混沌区域内应有稳定周期轨道组成的窗口存在[6],将任一窗口放大后,将得到与原分岔图相似的结构,即混沌系统的分岔图具有分形结构,本系统也不例外。当Q1d≈1.20136时,系统出现了稳定的3周期轨道,此后,系统还相继出现了6周期(Q1d≈1.201525)和12周期(Q1d≈1.201559)……直至系统再次出现稳定的奇异吸引子(Q1d≈1.20160),重归于混沌。在此过程中系统振荡的幅度变得越来越大,直至Q1d≈1.2035附近时,系统达到奇异吸引子稳定的临界状态,稳定的吸引子随之消失。
[1][2]下一页
安防之家专注于各种家居的安防,监控,防盗,安防监控,安防器材,安防设备的新闻资讯和O2O电商导购服务,敬请登陆安防之家:http://anfang.jc68.com/
小程序码
 
打赏
 
更多>文章标签:监控
更多>同类安防监控资讯
0相关评论

推荐图文更多...
点击排行更多...
安防监控商机更多...
安防监控圈更多...
最新视频更多...
推荐产品更多...
陶瓷头条 | 空调头条 | 卫浴头条 | 洁具头条 | 油漆头条 | 涂料头条 | 地板头条 | 吊顶头条 | 衣柜头条 | 家居头条 | 博一建材 | 博一建材 | 建材群站 | 建材资讯 | 建材商机 | 建材产品 | 水泥头条 | 楼梯之家 | 门窗之家 | 老姚之家 | 灯饰之家 | 电气之家 | 全景头条 | 照明之家 | 防水之家 | 防盗之家 | 区快洞察 | 漳州建材 | 泉州建材 | 三明建材 | 莆田建材 | 合肥建材 | 宣城建材 | 池州建材 | 亳州建材 | 六安建材 | 巢湖建材 | 宿州建材 | 阜阳建材 | 滁州建材 | 黄山建材 | 安庆建材 | 铜陵建材 | 淮北建材 | 马鞍山建材 |
建材 | 双碳之家 | 企业之家 | 移动社区 | 关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图 | 排名推广 | 广告服务 | 积分换礼 | RSS订阅 | sitemap | 粤ICP备14017808号
(c)2015-2017 Bybc.cn SYSTEM All Rights Reserved
Powered by 安防之家