电力检修|SVM与Fourier算法在电网短期负荷预测中的应用

   更新日期:2017-03-30     来源:建材之家    作者:安防之家    浏览:33    评论:0    
核心提示:SVM与Fourier算法在电网短期负荷预测中的应用杨镜非谢 宏程浩忠(上海交通大学电气工程系,上海,200030)  摘 要:本文将Fourier(傅立叶)算法与SVM(支持向量机)共同引入电网短期负荷预测。对于波动性较大的负荷,Fourier算法用于滤除高次谐波分量。SVM用于对滤除了高次分量的数据进行统计学习,它首先筛选与预测点相关的的历史数据构成训练样本,再将预测的平滑性和误差损失函数相结

2019年中国陶瓷卫浴行业市场发展趋势和需求预判

推荐简介:2019年中国陶瓷卫浴行业市场发展趋势和需求预判第一、市场需求总量会略有萎缩,主要是楼市成交后,装修动力不足;但不会有大的萎缩,市场份额会稳定在65-70亿㎡之间,行业整体形势稳定,不会有太大起伏,行业不会出现灾难性后果,更加不会崩盘;第二、大量低端生产企业、没有创新能力、市场营销比较传统的生产型企业、营销公司将批量退出建材市......
安防之家讯:cript>SVM与Fourier算法在电网短期负荷预测中的应用

杨镜非谢 宏程浩忠

(上海交通大学电气工程系,上海,200030)
摘 要:本文将Fourier(傅立叶)算法与SVM(支持向量机)共同引入电网短期负荷预测。对于波动性较大的负荷,Fourier算法用于滤除高次谐波分量。SVM用于对滤除了高次分量的数据进行统计学习,它首先筛选与预测点相关的的历史数据构成训练样本,再将预测的平滑性和误差损失函数相结合构成问题的目标函数进行求解。编制了相应的软件,对某实际电网进行了短期负荷预测,取得了理想的结果。
关键词:支持向量机,傅立叶,损失函数,短期负荷预测,核函数
ApplicationofSVM
topowersystemshort-termloadforecast


YangJingfei,ChengHaozhong


(DepartmentofElectricalEngineering,ShanghaiJiaotongUniversity,
Shanghai,200030,China)
Abstract:ThispaperintroducesFourieralgorithmandSVMalgorithmtoshort-termloadforecastingofpowersystem.Fouriermethodisappliedtogetridofthehighfrequencyharmonics.ThedatawithouthighfrequencyharmonicsarethenutilizedbythestatisticslearningmethodofSVM(supportvectormachines).SampLEDataareconstitutedbyfilteringthehistoricaldatathroughclusteringmethod.Theobjectfunctiontakesboththefatnessofpredictionanderrorlossfunctionintoconsideration.Correspondingsoftwarewasdevelopedandusedtoforecasttheshort-termloadofapracticalpowersystem,andthefinalforecasterrorislow.
Keywords:supportvectormachines,Fourieralgorithm,lossfunction,short-termloadforecasting,kernalfunction
0引言
电力系统负荷预测是电网能量管理系统的重要内容,通过精确的负荷预测,可以经济合理地安排机组启停,减少旋转备用容量,合理安排检修计划,降低发电成本,提高经济效益。常用的方法有非线性回归、神经网络法、时间序列法、模糊理论等。非线性回归和时间序列法在电网情况正常、生产和气象变化不大的时候预测效果良好,但不能考虑一些影响负荷的要素,如休息日、气象等,当这些因素发生突变时预测精度受到影响。神经网络和模糊理论考虑到了影响负荷的一些不确定因素,但没有彻底解决网络结构设计的难题,且需要较长的训练时间。
SVM(支持向量机)是由Vapnik[1]最早提出的一种统计学习方法,近年来已经被成功地应用于语音识别、文字识别、时序数列预测等领域。研究显示,该统计学习方法具有学习速度快、全局最优和推广能力强的优点,其学习结果经常明显好于其它的模式识别和回归预测方法。本文将SVM理论应用于电力系统短期负荷预测,既考虑了影响负荷的诸因素,又建立了完善的数学模型。
SVM算法对与预测负荷曲线较平滑的系统,能够取得较理想的效果。但是,对于惯性较小、随机波动性较强的中小型电网,其效果相对较差。改进的方法是,先采用Fourier算法将历史负荷曲线分解为平滑曲线和随机波动曲线两部分,只采用平滑部分作为SVM的历史训练数据,能够取得更好的效果。

1SVM线性回归模型
假设有一组训练数据,共有l个,其中第i个数据包含变量和与之相对应的变量xi∈Rn和与之相对应的变量yi∈R,SVM定义了一种机器(machine),用于确定x到y的映射关系x→f(X,a),a为可调参数,通过对已知数据的学习来确定它。在线性回归中,定义映射函数f(x)=<w,x> b,w∈Rn,y∈R,并要求:1)找到最小的w以保证曲线的平滑性,一种常用的方法是使得w的欧氏二范数最小。2)映射的误差在允许的ε范围之内。可以写成下列数学模型:

满足(2)式有时候会使问题的求解变得非常困难,可以通过在目标函数中增加损失函数来进行处理,损失函数有多种形式,本文中只考虑ε-intensive损失函数:

式中C为常数,是回归精度超过允许值的惩罚因子。(4)为有条件约束的优化问题,根据非线性规划对偶性理论,对其建立没有约束条件的Lagrange方程,并将最小值问题它转化为对偶的最大值问题:

2非线性回归模型及其核函数
当然,现实中的大部分问题并不是简单的线性问题,对非线性问题进行回归,可以通过映射φ:X→τ把xi映射到特征空间τ,然后用核函数k(x,x′)=<φ(x),φ(x′)>来代替线性回归中的<x,x′>,根据文献[1],支持向量回归的算法就可以改写为:

无论线性和非线性模型,都可采用内点法求解。

3短期负荷预测的SVM与Fourier方法
3.1样本及其输入输出量的选择
本文采用SVM方法来解决短期负荷预测问题。对于训练样本,首先通过聚类找出和预测点在星期属性、节假日属性、预测时段都相同的数据作为SVM中的y值,相应的x值(即样本输入量)分为如下几类:
1)A={a1,a2,...,an},预测日之前n日内的在预测时段的负荷数据
2)B={b1,b2,...,bm},预测日前一日预测时段之前m个时段的负荷数据
3)C={c1,c2,...,cs},预测日的气象预报,共s个数据,包含平均气温、最高气温、最低气温、风力、湿度等
4)D={d1,d2,...,dn},预测日之前日内的每日气象数据,其中任何一个元素di包含s个如上所述的气象数据
5)E={e1,e2,...,e7},预测日的周属性,代表周一到周日,每个变量用1或0来表示
6)F,一些从已知变量中通过某种计算演化而来的、对负荷的结果可能影响较大的数据(例如前一日温度与该日预测温度的差值、前二日与前一日在预测时段的负荷差值、该日前一周每天在预测时段的负荷平均值等)。
3.2负荷预测的支持向量机模型
为了选择合适的核函数,本文使用线性函数、多项式函数、径向基函数、对数S型等多种核函数进行测试,发现径向基函数的模型对于负荷预测问题精度最高,因此本文选用径向基函数作为核函数。
假设按照上述样本及其输入输出量的选择构造的l个样本集合为{(xi,yi),i=1,2,...,l},则负荷预测的支持向量机模型可写为式(6)的形式,其中为径向基函数。
3.3Fourier算法对历史数据进行平滑处理
经数字实验证明,上述短期负荷预测的SVM方法对于负荷惯性较大的大型电网有较理想的效果,但是,如果将它应用于具有较多冲击性负荷(如轧钢厂),其误差较大。为了改进算法的预测效果,本文提出用Fourier算法对每日历史负荷曲线进行Fourier变换,分解为平滑曲线和随机波动曲线两部分,只采用平滑部分作为历史训练数据,方法如下。
1)对欲进行处理的一日负荷数据,检验其初始点负荷f(0)与终点负荷f(24)的差值是否小于给定的阈值δ。如果是,说明该曲线基本满足Fourier分解的基本条件f(0)=f(T);否则,进行时间轴的旋转变换,使得f(0)=f(T);
 [1][2]下一页
安防之家专注于各种家居的安防,监控,防盗,安防监控,安防器材,安防设备的新闻资讯和O2O电商导购服务,敬请登陆安防之家:http://anfang.jc68.com/
小程序码
 
打赏
 
更多>文章标签:安防监控
更多>同类安防监控资讯
0相关评论

推荐图文更多...
点击排行更多...
安防监控商机更多...
安防监控圈更多...
最新视频更多...
推荐产品更多...
水泥之家 | 橱柜之家 | 机械之家 | 水电之家 | 五金之家 | 家电之家 | 饰品头条 | 墙布头条 | 家纺头条 | 塑料头条 | 老姚之家 | 灯饰之家 | 电气之家 | 全景头条 | 陶瓷之家 | 照明之家 | 防水之家 | 防盗之家 | 博一建材 | 卫浴之家 | 区快洞察 | 漳州建材 | 泉州建材 | 三明建材 | 莆田建材 | 合肥建材 | 宣城建材 | 池州建材 | 亳州建材 | 六安建材 | 巢湖建材 | 宿州建材 | 阜阳建材 | 滁州建材 | 黄山建材 | 安庆建材 | 铜陵建材 | 淮北建材 | 马鞍山建材 |
建材 | 双碳之家 | 企业之家 | 移动社区 | 关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图 | 排名推广 | 广告服务 | 积分换礼 | RSS订阅 | sitemap | 粤ICP备14017808号
(c)2015-2017 BO-YI.COM SYSTEM All Rights Reserved
Powered by 安防之家